GENERAL INFORMATION

WOOD-KNOCKER®II+ AND PAN-KNOCKER™II+

Concrete Inserts

PRODUCT DESCRIPTION

Wood-Knocker II+ and Pan-Knocker II+ concrete inserts are installed onto forms used to support newly poured concrete floor slabs, roof slabs or walls. The concrete inserts are specifically designed to provide hanger attachments for mechanical, electrical, plumbing (MEP) and fire protection.

When the forms are stripped, the color-coded flange is visibly embedded in the concrete surface. The inserts allow the attachment of steel threaded rod or threaded bolts in sizes ranging from 1/4" to 3/4" in diameter. The sturdy base and rib design minimizes the chance of inserts accidentally being hit out of place after attachment to the forms. The impact plate offers resistance to rotation within the concrete as a steel threaded rod or threaded bolt is being turned during installation.

A push-in thread version is also available which does not require turning the threaded rod or threaded bolt during installation which can be ideal for applications such as mounting prefabricated hardware and hanger assemblies.

Distribution Systems / Utility Lines

Cracked and Uncracked Concrete

Seismic Qualification (SDC A - F)

Conduit and Lighting Systems

GENERAL APPLICATIONS AND USES

- Hanging Pipe and Sprinkler Systems
- HVAC Ductwork and Strut Channels
- Suspending Trapeze and Cable Trays
- Cast-In Pre-installed Anchoring Points

FEATURES AND BENEFITS

- + Fast and simple to install, low installed cost
- + Sturdy base design resists inserts from being kicked over after placement
- + Color coded by size for simple identification, can be further marked by trade and/or utility
- + Inserts can be installed in form pours only 3.5" thick; low profile (LP) inserts can be installed in form pours only 2.5" thick (see installation details)
- + Suitable for seismic and wind loading (see design information)
- + Multi thread inserts allow for multiple diameters using the same part
- + All sizes of multi thread inserts have performance data for tension and shear loading
- + Push-In thread version does not require turning threaded rod elements during installation

APPROVALS AND LISTINGS

- International Code Council, Evaluation Service (ICC-ES), ESR-3657 for concrete
- Code compliant with the 2021 IBC/IRC, 2018 IBC/IRC, 2015 IBC/IRC, and 2012 IBC/IRC
- Tested in accordance with ASTM E488 and ICC-ES AC446 for use in cracked and uncracked concrete and with the design provisions of ACI 318 (Strength Design method)
- Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading
- Underwriters Laboratories (UL Listed) File No. EX1289 and VFXT7.EX1289, Also UL tested and recognized for use in air handling spaces (i.e. plenum rated locations)
- FM Approvals (Factory Mutual) see FM Approval Guide

GUIDE SPECIFICATIONS

CSI Divisions: 03 15 19 - Cast-In Concrete Anchors and 03 16 00 - Concrete Anchors. Concrete inserts shall be Wood-Knocker II+ or Pan-Knocker II+ as supplied by DEWALT, Towson, MD. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

SECTION CONTENTS

General Information	1
Material Specifications	2
Installation Instructions	2
Installation Specifications	3
Performance Data (ASD)	5
Strength Design Information	6
Design Strength Tables (SD)	10
Ordering Information	13

WOOD-KNOCKER II+ Form insert

PAN-KNOCKER II+ FORM INSERT 'NO NAIL' VERSION OF WOOD-KNOCKER II+

WOOD-KNOCKER II+ Form insert Push-in thread

PAN-KNOCKER II+ FORM INSERT PUSH-IN THREAD

ANCHOR MATERIALS

• Carbon Steel and Engineered Plastic

ROD/ANCHOR SIZE RANGE (TYP.)

• 1/4" through 3/4" diameters (UNC)

INSERT VERSIONS

- Thread-In
- Push-In

SUITABLE BASE MATERIALS

- Normal-weight Concrete
- Lightweight Concrete

MATERIAL SPECIFICATIONS

Wood-Knocker II+ and Pan-Knocker II+

Anchor Component	Component Material
Insert Body	AISI 1008 Carbon Steel or equivalent
Plastic sleeve	Engineered Plastic (polypropylene)
Zinc Plating (metal components)	ASTM B633 (Fe/Zn5) Min. plating requirements for mild service condition

Material Properties for Common Threaded Rods

Description	Steel Specification (ASTM)	Threaded Rod Diameter (inch)	Minimum Yield Strength, fy (ksi)	Minimum Ultimate Strength, fu (ksi)
Standard Carbon Steel	A36 or ASTMF1554, Grade 36	1/4 to 3/4	36.0	58.0
High Strength Carbon Steel	A193, Grade B7	1/4 to 3/4	105.0	125.0

Inserts may be considered for use in conjunction with all grades of continuously threaded carbon steel (all-thread) that comply with code reference standards and that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series.

INSTALLATION INSTRUCTIONS

Installation Instructions for Wood-Knocker II+ Thread-In

DRIVE

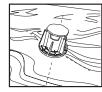
POSITION

Step 1 Position insert on formwork plastic down.

Step 2 Drive insert head down until head contacts plastic (e.g. Wood-Knocker installation tool, hammer).

Installation Instructions for Wood-Knocker II+ Push-In POSITION DRIVE PREPARE

Step 1 Position insert on formwork plastic down.



Step 2 Drive insert head down until head contacts plastic (e.g. Wood-Kn tool, hammer) Wood-Knocker installation

POSITION

POSITION

Step 1 Position insert on formwork plastic down.

Step 2

Mount/secure insert to

(e.g. with screws, pins).

formwork through plastic base

Step 1 Position insert on formwork plastic down.

1-800-4 DEWALT

Step 2 Mount/secure insert to formwork through plastic base (e.g. with screws, pins).

PREPARE

Step 3

PRFPARE

Step 3

Step 3

PREPARE

After formwork removal,

flush mounted fixtures).

remove nails as necessary (e.g.

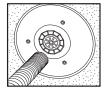
After formwork removal, remove

pins or screws as necessary

(e.g. flush mounted fixtures)

After formwork removal,

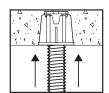
flush mounted fixtures).


remove nails as necessary (e.g

Step 3

After formwork removal. remove pins or screws as necessary (e.g. flush mounted fixtures).

ATTACH

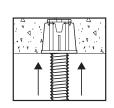


Step 4 Guide threaded rod/bolt through plastic thread seal cover. Turn until steel element fully threaded. Attach fixtures as applicable.

ATTACH

Step 4

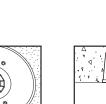
Guide threaded rod/bolt through plastic thread seal cover. Push in until steel element is fully seated. Attach fixtures as applicable.



Step 4

Guide threaded rod/bolt through plastic thread seal cover. Turn until steel element fully threaded. Attach fixtures as applicable.

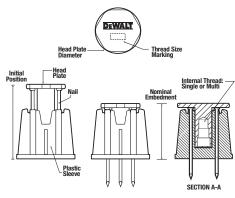
ATTACH

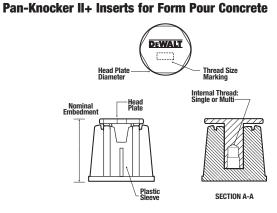

Step 4

Guide threaded rod/bolt through plastic thread seal cover. Push in until steel element is fully seated. Attach fixtures as applicable.

ECHANICAL

ANCHORS


Concrete Inserts WOOD-KNOCKER®II+/PAN-KNOCKER[™]I



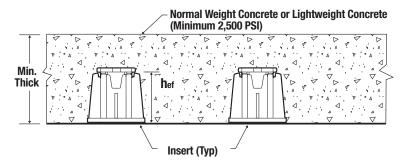
INSTALLATION SPECIFICATIONS

Wood-Knocker II+ Inserts for Form Pour Concrete

Installation Specifications for Wood-Knocker II+ and Pan-Knocker II+ Single Thread Inserts

Incost Dimension / Dremarks	Complete	Units			Nomi	inal Rod/Ancho	r Size			
Insert Dimension / Property	Symbol	Units	1/4" (LP)	3/8" (LP)	1/4"	3/8"	1/2"	5/8"	3/4"	
Outside diameter of steel insert body	da	in. (mm)		.5 3)		0.7 (18)			.0 25)	
Insert head plate diameter	Chp	in. (mm)		30 3)		1.50 (38)		75 5)		
Plastic sleeve diameter	ds	in. (mm)	(5	2 1)		2-3/8 (60)			3/8 60)	
Nominal embedment depth	h _{nom}	in. (mm)	(3	1/2 8)		2 (51)		(5		
Effective embedment depth	h _{ef}	in. (mm)		25 2)		1.75 (45)			75 5)	
Minimum member thickness	h _{min}	in. (mm)						3-1/2 (89)		
Minimum spacing distance	Smin	in. (mm)	4	da		4da		4	da	
Minimum edge distance	Cmin	in. (mm)	0.5dhp	+ 3/4 (19)		0.5dhp + 3/4 (19)		0.5dhp	+ 3/4 (19)	
Insert head plate thickness	t _{hp}	in. (mm)	1/8 (3)			1/8 (3)			/8 3)	
UNC internal thread size	-	TPI	1/4-20	3/8-16	1/4-20	3/8-16	1/2-13	5/8-11	3/4-10	
Approx. internal thread length	-	in.	5/16	7/16	3/8	1/2	5/8	3/4 7/8		
Approx. gap between plastic sleeve opening and start of internal thread, after setting	-	in.	5/	16			3/8			
1. Inserts have internal thread size designations	for coarse thr	eads matchir	ng the nominal ro	d / anchor size.						

Installation Specifications for Wood-Knocker II+ and Pan-Knocker II+ Multi Thread Inserts


								Nom	inal Roo	l/Ancho	r Size					
Insert Dimension / Property	Symbol	Units	1/4" & Multi	& 3/8" i (LP)	1/4" 8 Mi			4" & 3/8 1/2" Mu		3/8" 8 Mi	k 1/2" ulti	3/8" 8	4 1/2" & Multi	5/8"	5/8" 8 Mu	
Outside diameter of steel insert body	da	in. (mm)	0 (1	.5 3)				0.7 (18)						1.0 (25)		
Insert head plate diameter	Chp	in. (mm)		1.30 (33)			1.50 (38)							1.75 (45)		
Plastic sleeve diameter	ds	in. (mm)		2 1)	2-3/8 (60)									2-3/8 (60)		
Nominal embedment depth	h _{nom}	in. (mm)		1/2 8)				2 (51)				2-3/8 (60) 2.25 (57)				
Effective embedment depth	h _{ef}	in. (mm)	1.: (3	25 2)				1.75 (45)								
Minimum member thickness	h _{min}	in. (mm)	2- ⁻ (6	1/2 4)				3-1/2 (89)						3-1/2 (89)		
Minimum spacing distance	Smin	in. (mm)	4	da				4da						4da		
Minimum edge distance	Cmin	in. (mm)	0.5dhp	+ 3/4 (19)			0.	5dhp + 3 (*	/4 19)				0.5	dhp + 3/ (1	/4 9)	
Insert head plate thickness	t _{hp}	in. (mm)		/8 3)				1/8 (3)						1/8 (3)		
UNC internal thread size	-	TPI	1/4- 20	3/8- 16	1/4- 20	3/8- 16	1/4- 20	3/8- 16	1/2- 13	3/8- 16	1/2- 13	3/8-16 1/2- 5/8- 5/8- 3/				3/4- 10
Approx. internal thread length	-	in.	5/16	7/16	3/8	1/2	5/16	3/8	1/2	7/16	9/16	3 3/8 1/2 5/8 5/8 3				3/4
Approx. gap between plastic sleeve opening and start of internal thread, after setting	-	in.	7/8	5/16	1	5/16	1-7/16	15/16	5/16	1	5/16	1-11/16 1-1/16 5/16 1-3/16 5,				5/16
1. Inserts have internal thread size designations for coarse threads matching the nominal rod / anchor size.																

DEWALT.

Installation Specifications for Wood-Knocker II+ and Pan-Knocker II+ Push-In Thread Inserts

lucart Dimension / Drevents	Ormhal	Halla	Nominal Rod	/Anchor Size
Insert Dimension / Property	Symbol	Units	3/8"	1/2"
Outside diameter of steel insert body	da	in. (mm)	1.0 (25)	1.125 (29)
Insert head plate diameter	dhp	in. (mm)	1.9 (48)	2.2 (56)
Plastic sleeve diameter	ds	in. (mm)	2-3/8 (60)	2-3/8 (60)
Nominal embedment depth	h _{nom}	in. (mm)	1-7/8 (48)	2-3/16 (56)
Effective embedment depth	h _{ef}	in. (mm)	1.7 (43)	2.0 (56)
Minimum member thickness	h _{min}	in. (mm)	3-1/2 (89)	3-1/2 (89)
Minimum spacing distance	Smin	in. (mm)	4da	4d _a
Minimum edge distance	Cmin	in. (mm)	0.5dhp + 3/4 (19)	$0.5 d_{hp} + 3/4$ (19)
Insert head plate thickness	t _{hp}	in. (mm)	3/16 (5)	3/16 (5)
UNC internal thread size	-	TPI	3/8-16	1/2-13
Approx. internal thread length	-	in.	5/8	11/16
Approx. gap between plastic sleeve opening and start of internal thread, after setting	-	in.	3/4	7/8

Wood-Knocker II+ and Pan-Knocker II+ Inserts Installed in Soffit of Form Pour Concrete Floor and Roof Members

PERFORMANCE DATA (ASD)

Allowar	de Desig	<u>jn vai</u>	ues for In	serts in	Uncrac	kea Con	crete (ID	S) ^{1,2,3,4,3,0,}	7,0,9,10,11,12					
Load			Wood	-Knocker II-	and Pan-K	(nocker II+	Single Threa	ad Inserts			Wood-		and Pan-Ki hread Inseri	
Туре	1/4" (L	P)	3/8" (LP)	1/4"		3/8"	1/2"	5	/8"	3/4"		3/8"		/2"
Tension	1,085		1,085	1,055	1	,800	1,800	1,	800	1,800		1,725	2,2	200
Shear	400		1,085	720	1	,710	1,800	1,	800	1,800		1,470	2,5	200
					Wood-I	Knocker II+	and Pan-Kr	ocker II+ N	Aulti Thread	Inserts				
Load Type	1/4 & 3/8	Multi (L	P) 1/4 & 3	3/8 Multi	1/4 8	& 3/8 & 1/2	Multi	3/8 & 1	/2 Multi	3/8 8	4 1/2 & 5/8	Multi	5/8 & 3/	/4 Multi
Type	1/4"	3/8"	1/4"	3/8"	1/4"	3/8"	1/2"	3/8"	1/2"	3/8"	1/2"	5/8"	5/8"	3/4"
Tension	1,085	1,085	5 1,355	1,800	1,555	1,800	1,800	1,800	1,800	2,625	2,625	2,625	2,625	2,625
Shear	400	1,085	5 370	1,710	720	1,710	1,800	1,410	1,800	1,510	2,625	2,625	2,625	2,625
			bles for inserts											

N100450700101110

Allowable Stress Design Values in tables for inserts are provided for illustration and applicable only when the following design

1. Concrete compressive strength, f'c = 3,000 psi given for normal weight concrete.

2. Single anchors with static loads and with installation in accordance with published instructions.

3. Concrete determined to remain uncracked for the life of the anchorage.

4. Load combinations from AACI 318 (-19 and -14)-14 5.3 or ACI 318-11 9.2, as applicable (no seismic loading considered).

5. 30% dead load and 70% live load, controlling load combination 1.2D + 1.6L.

6. Calculation of the weighted average for $\alpha = 1.2^{\circ}0.3 + 1.6^{\circ}0.7 = 1.48$.

7. Assuming no edge distance influence ($c_{a1} \ge 1.5h_{ef}$) and no side-face blowout in tension.

8. Assuming no edge distance ($c_{a1} \ge 3h_{ef}$) or corner distance influence ($c_{a2} \ge 1.5c_{a1}$) in shear.

9. Shear loads may be applied in any direction.

10. h \geq hmin according to ACI 318-19 17.9, ACI 318-14 17.7 or ACI 318-11 D.8, as applicable.

11. Values are for Condition B where supplementary reinforcement in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, is not provided.

12. The allowable loads shown in the table are for the inserts only. The design professional is responsible for checking threaded rod strength in tension, shear and combined tension and shear, as applicable. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D.

Allowable Design Values for Inserts in Cracked Concrete (Ibs)^{1,2,3,4,5,6,7,8,9,10,11,12}

Load Type		Wood	-Knocker II+ and	Pan-Knocker II+	Single Thread I	ıserts		Wood-Knocker II+ and Pan-Knocke Push-In Thread Inserts					
Type	1/4" (LP)	3/8" (LP)	1/4"	3/8"	1/2"	5/8"	3/4"	3/8"	1/2"				
Tension	870	870	1,440	1,440	1,440	1,440	1,440	1,380	1,760				
Shear	400	870	720	1,440	1,440	1,440	1,440	1,380	1,760				

		Wood-Knocker II+ and Pan-Knocker II+ Multi Thread Inserts													
Load Type	1/4 & 3/8	Multi (LP)	1/4 & 3	/8 Multi	1/4 8	& 3/8 & 1/2	Multi	3/8 & 1/	/2 Multi	3/8 8	1/2 & 5/8	5/8 & 3/4 Multi			
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1/4"	3/8"	1/4"	3/8"	1/4"	3/8"	1/2"	3/8"	1/2"	3/8"	1/2"	5/8"	5/8"	3/4"	
Tension	870	870	1,355	1,440	1,440	1,440	1,440	1,440	1,440	2,100	2,100	2,100	2,100	2,100	
Shear	400	870	370	1,440	720	1,440	1,440	1,440	1,440	1,510	2,100	2,100	2,100	2,100	

Allowable Stress Design Values in tables for inserts are for illustration and applicable only when the following design assumptions are followed:

1. Concrete compressive strength, f'c = 3,000 psi given for normal weight concrete.

2. Single anchors with static loads and with installation in accordance with published instructions.

3. Concrete determined to remain cracked for the life of the anchorage.

4. Load combinations from ACI 318 (-19 and -14) 5.3 or ACI 318-11 9.2, as applicable (no seismic loading considered).

5. 30% dead load and 70% live load, controlling load combination 1.2D + 1.6L.

6. Calculation of the weighted average for $\alpha = 1.2^{\circ}0.3 + 1.6^{\circ}0.7 = 1.48$.

7. Assuming no edge distance influence ($\ensuremath{C_{a1}}\xspace \ge 1.5\ensuremath{h_{ef}}\xspace$) and no side-face blowout in tension.

8. Assuming no edge distance (c_{a1} \geq 3hef) or corner distance influence (c_{a2} \geq 1.5c_{a1}) in shear.

9. Shear loads may be applied in any direction.

10. $h \geq h_{\text{min}}$ according to ACI 318-19 17.9, ACI 318-14 17.7 or ACI 318-11 D.8, as applicable.

11. Values are for Condition B where supplementary reinforcement in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, is not provided.

12. The allowable loads shown in the table are for the inserts only. The design professional is responsible for checking threaded rod strength in tension, shear and combined tension and shear, as applicable. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D.

UL Listings and FM Approvals for Supporting Fire Protection Services & Automatic Sprinkler Systems

Listing/Approval		N/A 4" N/A 4" 8" 8" 8" 4" 8"													
•	1/4" LI	P 3/	8" LP	1/4"	3/	/8"	1/2"	5/8	su	3/4"	3/	/8"	1/	2"	
UL Max. Pipe Size	N/A		4"	N/A	4	4"	8"	8'	'	8"	· · ·		8)")	
FM Max. Pipe Size	N/A		4"	N/A	4	4"	8"	-		-	4"		8	," 	
					Wood-Ki	nocker II+	and Pan-Kr	ocker II+	Multi Thre	ad Inserts					
Listing/Approval	1/4 & 3/8	Multi (LP)	1/4 & 3	3/8 Multi	1/4 8	3/8 & 1/ 2	2 Multi	3/8 & 1	/2 Multi	3/8 8	1/2 & 5/8 Multi		5/8 & 3/4 Mi		
	1/4"	3/8"	1/4"	3/8"	1/4"	3/8"	1/2"	3/8"	1/2"	3/8"	1/2"	5/8"	5/8"	3/4"	
UL Max. Pipe Size	N/A	4"	N/A	4"	N/A	4"	8"	4"	8"	4"	8"	12"	12"	12"	
FM Max. Pipe Size	N/A	4"	N/A	4"	N/A	4"	8"	4"	8"	4"	8"	12"	12"	12"	
Underwriters Laboratorie	` '			VFXT7.EX128	39. Also UL 1	tested and r	ecognized for	use in air h	andling space	ces (i.e. plenu	m rated loca	tions).			
FM Approvals (Factory N	/lutual) – see	EM Δnnrova	l Guide												

REV. J

FECHNICAL GUIDE – MECHANICAL ANCHORS ©2022 DEWALT

S

STRENGTH DESIGN INFORMATION

Design Information For Wood Knocker II+ and Pan-Knocker II+ Single Thread Inserts^{1,2,3,4,5}

Design Information / Insert Property	Symbol	Units	1/4" (LP)	3/8" (LP)	1/4"	3/8"	1/2"	5/8"	3/4"
Outside diameter of the steel insert body	da	in. (mm)		.5 3)		0.7 (18)		1	.0 (5)
Insert head net bearing area	Abrg	in ² (mm ²)	1.	00 45)		1.20 (762)		1.	40 03)
Effective embedment depth	hef	in. (mm)	1.	+3) 25 (2)		1.75 (45)		1.	75 5)
STEEL	STRENGTH IN	(/	(4 17.4.1 or ACI	(-)	n D.5.1)	(4	
	<u> </u>	lb	3.545	6.535	3.545)05	12	685
Steel strength in tension of single insert	N _{sa,insert}	(kN)	(15.8)	(29.1)	(15.8)		0.1)		6.4)
Steel strength in tension of single insert, seismic	N _{sa,insert,eq}	lb (kN)	3,545 (15.8)	6,535 (29.1)	3,545 (15.8))05).1)		685 6.4)
Reduction factor, steel strength in tension	φ	-	0.	65		0.65		0.	65
CONCRETE	BREAKOUT S	TRENGTH I	N TENSION (AC	318-19 17.6.2	2, ACI 318-14 1	7.4.2 or ACI 31	8-11 D.5.2)		
Effectiveness factor for cracked concrete	k₀ –	-			24 (fo	r SI use a value	of 10)		
Modification factor for uncracked concrete	$\Psi_{C,N}$	-				1.25			
Reduction factor, concrete strength in tension	ϕ	-				0.70			
STEEL	L STRENGTH II	N SHEAR (A	CI 318-19 17.7	7.1, ACI 318-14	17.5.1 or ACI	318-11 Section	D.6.1)		
Steel strength in shear of single insert	Vsa,insert,deck	lb (kN)	985 (4.4)	2,835 (12.6)	1,775 (7.9)	4,220 (18.8)	7,180 (31.9))75).4)
Steel strength in shear of single insert, seismic	Vsa,insert,eq,deck	lb (kN)	385 (1.7)	625 (2.8)	1,775 (7.9)	4,220 (18.8)	7,180 (31.9))75).4)
Reduction factor, steel strength in shear	ϕ	-	0.	60		0.60	•	0.	60
					CI 318-14 17.5 8-14 17.5.3 or				
Load bearing length of insert	le	in. (mm)		25 2)		1.75 (45)	-		75 5)
Reduction factor, concrete strength in shear	φ	-	· · · · · · · · · · · · · · · · · · ·	70		0.70			70
Coefficient for pryout strength	-	0.	1		1			1	
Reduction factor, pryout strength in shear	kcp Ø	-	0.	70		0.70		0.	70

Design of headed cast-in specialty inserts shall be in accordance with the provisions of ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D, as applicable, for cast-in anchors. Concrete breakout strength must also be in accordance with and steel deck figures, as applicable.

3. Strength reduction factors for the inserts shall be taken from ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for cast-in headed anchors. Strength reduction factors for load combinations in accordance with ACI 318 (-19 and -14) 5.3 or ACI 318-11 9.2, as applicable, governed by steel strength of the insert are tabulated. Strength reduction values correspond to brittle steel elements. The value of ϕ applies when the load combinations of 2021 IBC Section 1605.1 or 2018, 2015 and 2012 IBC 1605.2, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4.

4. Minimum spacing distance between anchors and minimum edge distances for cast-in headed anchors shall be in accordance with ACI 318-19 17.9, ACI 318-14 17.7 or ACI 318-11 D.8, as applicable and the installation tables for the inserts.

5. The strengths shown in the table are for inserts only. Design professional is responsible for checking threaded rod strength in tension, shear, and combined tension and shear, as applicable. See steel design information for common threaded rod elements.

Design Information for Wood Knocker II+ and Pan-Knocker II+ Multi Thread Inserts^{2,3,4,5}

Design Information f	or Wood	i Knock	(er II+	and F	'an-K	nockei	r II+ N	lulti T	hread	Inser	ts ^{,2,3,4,5}					
Design Information	Symbol	Units		& 3/8 i (LP)		& 3/8 ulti	1/4	& 3/8 & Multi	1/2		& 1/2 ulti	3/8	& 1/2 & Multi	5/8		& 3/4 Jiti
•			1/4"	3/8"	1/4"	3/8"	1/4"	3/8"	1/2"	3/8"	1/2"	3/8"	1/2"	5/8"	5/8"	3/4"
Outside diameter of the steel insert body	da	in. (mm)		.5 3)				0.7 (18)						1.0 (25)		
Insert head net bearing area	Abrg	in² (mm²)	(6-	00 45)				1.20 (762)						1.40 (903)		
Effective embedment depth	hef	in. (mm)		25 2)				1.75 (45)						2.25 (57)		
	STEE	L STRENGT	H IN TEN	SION (AC	1 318-19	9 17.6.1,	ACI 318-	14 17.4.	1 or ACI	318-11	Section I	D.5.1)				
Steel strength in tension of single insert	Nsa,insert	lb (kN)	3,545 (15.8)	6,535 (29.1)	3,085 (13.7)	9,005 (40.1)	3,545 (18.1)	7,515 (33.4)	(40.1)	9,005 (40.1)	9,005 (40.1)	8,630 (38.4)		610 3.9)		100 3.1)
Steel strength in tension of single insert, seismic	Nsa,insert,eq	lb (kN)	3,545 (15.8)	6,535 (29.1)	3,085 (13.7)	9,005 (40.1)	3,545 (18.1)	7,515 (33.4)	9,005 (40.1)	9,005 (40.1)	9,005 (40.1)	8,630 (38.4)		610 3.9)		100 3.1)
Reduction factor, steel strength in tension	φ	-	0.	65 0.65 0.65												
	CONCRET	E BREAKO	UT STREM	IGTH IN 1	ENSION	(ACI 318	-19 17.6	.2, ACI 3	18-14 1	7.4.2 or	ACI 318-	11 D.5.2)			
Effectiveness factor for cracked concrete	kc	-		RENGTH IN TENSION (ACI 318-19 17.6.2, ACI 318-14 17.4.2 or ACI 318-11 D.5.2) 24 (for SI use a value of 10)												
Modification factor for uncracked concrete	$\Psi_{C,N}$	-							1.	25						
Reduction factor, concrete strength in tension	φ	-							0.	70						
	STEE	L STRENG	TH IN SH	EAR (ACI	318-19	17.7.1, A	ACI 318-1	4 17.5.1	or ACI 3	818-11 S	ection D	.6.1)				
Steel strength in shear of single insert	Vsa,insert,deck	lb (kN)	985 (4.4)	2,835 (12.6)	910 (4.1)	4,220 (18.8)	1,775 (7.9)	4,220 (18.8)	7,180 (31.9)	3,475 (15.5)	7,180 (31.9)	3,720 (16.2)	9,410 (41.9)	10,570 (47.0		965 3.8)
Steel strength in shear of single insert, seismic	Vsa,insert,eq	lb (kN)	385 (1.7)	625 (2.8)	365 (1.6)	4,220 (18.8)	480 (2.1)	715 (3.2)	7,180 (31.9)	695 (3.1)	7,180 (31.9)	1,080 (4.8)	4,705 (20.9)	10,570 (47.0)	4,385 (19.1)	
Reduction factor, steel strength in shear	φ	-	0.	60				0.60						0.60		
	CONCRETE	BREAKOUT RYOUT STR	r streng Rength I	ith in Sh N Shear	IEAR (AC (ACI 31	318-19 8-19 17.3) 17.7.2, 7.3, ACI (ACI 318- 318-14 1	14 17.5. 7.5.3 or	2 or ACI ACI 318	318-11 -11 D.6.3	D.6.2) Al B)	ND			
Load bearing length of insert	le	in. (mm)		25 2)				1.75 (45)						2.25 (57)		
Reduction factor, concrete strength in shear	φ	-	0.	70				0.70						0.70		
Coefficient for pryout strength	Kcp	-		1				1						1		
Reduction factor, pryout strength in shear	φ	-	0.	70				0.70						0.70		

1. Concrete must have a compressive strength f 'c of 2,500 psi minimum. Installation must comply with published instructions.

2. Design of headed cast-in specialty inserts shall be in accordance with the provisions of ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D, as applicable, for cast-in headed anchors. Concrete breakout strength must also be in accordance with and steel deck figures, as applicable.

3. Strength reduction factors for the inserts shall be taken from ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for cast-in headed anchors. Strength reduction factors for load combinations in accordance with ACI 318 (-19 and -14) 5.3 or ACI 318-11 9.2, as applicable, governed by steel strength of the insert are tabulated. Strength reduction values correspond to brittle steel elements. The value of ϕ applies when the load combinations of 2021 IBC Section 1605.1 or 2018, 2015 and 2012 IBC 1605.2, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 9.2, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4.

4. Minimum spacing distance between anchors and minimum edge distances for cast-in headed anchors shall be in accordance with ACI 318-19 17.9, ACI 318-14 17.7 or ACI 318-11 D.8, as applicable and the installation tables for the inserts.

5. The strengths shown in the table are for inserts only. Design professional is responsible for checking threaded rod strength in tension, shear, and combined tension and shear, as applicable. See steel design information for common threaded rod elements.

Design Information for Wood-Knocker II+ and Pan-Knocker II+ Push-In Thread Inserts^{1,2,3,4,5}

1/2"
1.125
(29)
2.7
(1742)
2.0 (51)
D.5.1)
17,595
(78.3)
17,595
(7.3)
-11 D.5.2)
alue of 10)
0.6.1)
5,955
(26.5)
5,955
(26.5)
D.6.2) AND 3)
2.0
(51)
ndix D, as applicable, for cast-in headed
•••
ndix [

3. Strength reduction factors for the inserts shall be taken from ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for cast-in headed anchors. Strength reduction factors for load combinations in accordance with ACI 318 (-19 and -14) 5.3 or ACI 318-11 9.2, as applicable, governed by steel strength of the insert are tabulated. Strength reduction values correspond to brittle steel elements. The value of ϕ applies when the load combinations of 2021 IBC Section 1605.1 or 2018, 2015 and 2012 IBC 1605.2, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 9.2, as applicable, are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-19 17.5.4.

4. Minimum spacing distance between anchors and minimum edge distances for cast-in headed anchors shall be in accordance with ACI 318-19 17.9, ACI 318-14 17.7 or ACI 318-11 D.8, as applicable and the installation tables for the inserts.

5. The strengths shown in the table are for inserts only. Design professional is responsible for checking threaded rod strength in tension, shear, and combined tension and shear, as applicable. See steel design information for common threaded rod elements.

Specifications And Physical Properties Of Common Carbon Steel Threaded Rod Elements

Thread	led Rod Specification	Units	Min. Specified Ultimate Strength, Futa	Min. Specified Yield Strength 0.2 Percent Offset, F _{ya}	Futa — Fya	Elongation Minimum Percent ⁴	Reduction Of Area Min. Percent	Related Nut Specification ^s
Carbon	ASTM A36/A36M or ASTM F1554 Grade 36	psi (MPa)	58,000 (400)	36,000 (248)	1.61	23	40 (50 for A36)	ASTM A563 Gr. A or A194 Grade 2
Steel	ASTM A193/A193M ³ Grade B7	psi (MPa)	125,000 (860)	105,000 (720)	1.19	16	50	ASTM A563 Gr. A or A194 Grade 2

For SI: 1 inch = 25.4 mm, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 MPa = 145.0 psi.

1. Inserts may be used in conjunction with all grades of continuously threaded carbon steels (all-thread) that comply with code reference standards and that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series.

2. Standard Specification for Carbon Structural Steel.

3. Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High Temperature or High Pressure Service and Other Special Purpose Applications.

4. Based on 2-inch (50 mm) gauge length except for ASTM A36/A36M and ASTM A193, which are based on a gauge length of 4d (dred).

5. Where nuts are applicable, nuts of other grades and style having specified proof load stress greater than the specified grade and style are also suitable.

Steel Design Information For Common Threaded Rod Elements Used With Concrete Inserts^{1,2,3,4}

Design Information		Symbol	Units	1/4-inch	3/8-inch	1/2-inch	5/8-inch	3/4-inch
Threaded rod nominal outside diameter	drod	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	
Threaded rod effective cross-sectional area		Ase	in² (mm²)	0.032 (21)	0.078 (50)	0.142 (92)	0.226 (146)	0.335 (216)
Steel strength in tension of threaded rod	ASTM A36 or	Nsa,rod,A36	lb (kN)	1,855 (8.2)	4,525 (20.0)	8,235 (36.6)	13,110 (58.3)	19,430 (86.3)
Steel strength in tension of threaded rod, seismic	F1554, Grade 36	Nsa,rod,eq,A36	lb (kN)	1,855 (8.2)	4,525 (20.0)	8,235 (36.6)	13,110 (58.3)	19,430 (86.4)
Steel strength in tension of threaded rod	ASTM A193,	Nsa,rod,B7	lb (kN)	4,000 (17.7)	9,750 (43.1)	17,750 (78.9)	28,250 (125.7)	41,875 (186.0)
Steel strength in tension of threaded rod, seismic	Gr. B7	Nsa,rod,eq,B7	lb (kN)	4,000 (17.7)	9,750 (43.1)	17,750 (78.9)	28,250 (125.7)	41,875 (186.0)
Reduction factor, steel strength in tension		ϕ	-	0.75				
Steel strength in shear of threaded	ASTM A36 or	V _{sa,rod,A36}	lb (kN)	1,115 (4.9)	2,715 (12.1)	4,940 (22.0)	7,865 (35.0)	11,660 (51.9)
Steel strength in shear of threaded rod, seismic	F1554, Grade 36	V _{sa,rod,eq,A36}	lb (kN)	780 (3.5)	1,900 (8.4)	3,460 (15.4)	5,505 (24.5)	8,160 (36.3)
Steel strength in shear of threaded rod	ASTM A193,	Vsa,rod,B7	lb (kN)	2,385 (10.6)	5,815 (25.9)	10,640 (7.3)	16,950 (75.4)	25,085 (111.6)
Steel strength in shear of threaded rod, seismic	Gr. B7	Vsa,rod,eq,B7	lb (kN)	1,680 (7.5)	4,095 (18.2)	7,455 (34.2)	11,865 (52.8)	17,590 (78.2)
Reduction factor, steel strength in shear		ϕ	-			0.65		

For SI: 1 inch = 25.4 mm, 1 pound = 0.00445 kN, 1 in² = 645.2 mm². For pound-inch unit: 1 mm = 0.03937 inches.

1. Values provided for steel element material types based on minimum specified strengths and calculated in accordance with ACI 318-11 Eq. (D-2) and Eq. (D-29).

2. ϕ_{Nsa} shall be the lower of the $\phi_{Nsa,red}$ or $\phi_{Nsa,insert}$ for static steel strength in tension; for seismic loading $\phi_{Nsa,eq}$ shall be the lower of the $\phi_{Nsa,red,eq}$ or $\phi_{Nsa,insert,eq}$.

3. ϕ Vsa shall be the lower of the ϕ Vsarve or ϕ Vsarve for static steel strength in tension; for seismic loading ϕ Vsare shall be the lower of the ϕ Vsarve or ϕ Vsarve for static steel strength in tension; for seismic loading ϕ Vsarve or ϕ Vs

4. Strength reduction factors shall be taken from ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3 for steel elements. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318 (-19 and -14) Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the threaded rod are taken as 0.75 for tension and 0.65 for shear, values correspond to ductile steel elements. The value of ø applies when the load combinations of 2021 IBC Section 1605.1 or 2018, 2015 and 2012 IBC 1605.2, ACI 318 (-19 or -14) Section 5.3 or ACI 318-11 Section 9.2 are used in accordance with ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of ø must be determined in accordance with ACI 318-11 D4.4.

– REV. J

"FECHNICAL GUIDE – MECHANICAL ANCHORS ©2022 DEWALT

DESIGN STRENGTH TABLES (SD)

DEWALI

ANCHORS & FASTENERS

Tension and Shear Design Strengths for Wood-Knocker II+ and Pan-Knocker II+ Single Thread Inserts Installed in Form Poured Concrete and Roof Members - Uncracked Concrete^{1,2,3,4,5,6,7}

		Minimum Concrete Compressive Strength							
Nominal Anchor	ominal Anchor Embed. Disputer		f'c = 3,000 psi		000 psi	f'c = 6,000 psi			
Diameter (in.)	h _{ef} (in.)	ϕ Nn Tension (Ibs.)	∲Vn Shear (Ibs.)	ϕ Nn Tension (lbs.)	∲Vn Shear (lbs.)	ϕ Nn Tension (Ibs.)	ØVn Shear (Ibs.)		
1/4" (LP)	1-1/4	1,605	590	1,855	590	2,275	590		
3/8" (LP)	1-1/4	1,605	1,235	1,855	1,425	2,275	1,700		
1/4"	1-3/4	2,665	2,420	3,075	2,795	3,765	3,425		
3/8"	1-3/4	2,665	2,420	3,075	2,795	3,765	3,425		
1/2"	1-3/4	2,665	2,420	3,075	2,795	3,765	3,425		
5/8"	1-3/4	2,665	2,665	3,075	3,075	3,765	3,765		
3/4"	1-3/4	2,665	2,665	3,075	3,075	3,765	3,765		
Anobor Dullout/Dru	out Strangth Controls 🗔	Conoroto Proekout Stra	nath Controla 🗖 Staal	Strongth Controls					

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tension and Shear Design Strengths for Wood-Knocker II+ and Pan-Knocker II+ Single Thread Inserts Installed in Form Poured Concrete and Roof Members - Cracked Concrete^{1,2,3,4,5,6,7,8}

		Minimum Concrete Compressive Strength							
Nominal Anchor	Embed. Depth			f'c = 4,	000 psi	f'c = 6,000 psi			
Diameter (in.)	h _{ef} (in.)	ØNn Tension (lbs.)	∲Vn Shear (Ibs.)	ØNn Tension (Ibs.)	∲Vn Shear (Ibs.)	ϕ Nn Tension (Ibs.)	∲Vn Shear (lbs.)		
1/4" (LP)	1-1/4	1,285	590	1,485	590	1,820	590		
3/8" (LP)	1-1/4	1,285	885	1,485	1,020	1,820	1,250		
1/4"	1-3/4	2,130	1,730	2,460	2,000	3,015	2,445		
3/8"	1-3/4	2,130	1,730	2,460	2,000	3,015	2,445		
1/2"	1-3/4	2,130	1,730	2,460	2,000	3,015	2,445		
5/8"	1-3/4	2,130	2,130	2,460	2,460	3,015	3,015		
3/4"	1-3/4	2,130	2,130	2,460	2,460	3,015	3,015		
- Anchor Pullout/Prv	out Strenath Controls 🔲	- Concrete Breakout Stre	nath Controls 🔲 - Steel	Strenath Controls					

1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions: - No edge distance influence ($c_{a1} \ge 1.5h_{el}$) and no side-face blowout in tension. - No edge distance ($c_{a1} \ge 3h_{el}$) or corner distance influence ($c_{a2} \ge 1.5c_{a1}$) in shear.

2- Calculations were performed following methodology in ACI 318-19 17.5.3, ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D. The load level corresponding to the failure mode listed [steel strength of insert (Nsa,meet, Vsa,meet), concrete breakout strength, or pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod type, (Nsa,met, Vsa,met), the lowest load level controls.

3- Strength reduction factors shall be taken from ACI 318-14 17.3.3 or ACI 318-11 D.4.3 for cast-in headed anchors. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318 (-19 and -14) Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the insert are taken as 0.65 for tension and 0.60 for shear; values correspond to brittle steel elements.

4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.

5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D.

6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D and information contained in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D.

7- For lightweight concrete, where concrete breakout or anchor pullout/pryout strength controls, the tabulated values must be multiplied by 0.85 for sand-lightweight and 0.75 for all-lightweight, as applicable.

8- For seismic design in accordance with ACI 318, the tabulated tension design strengths for concrete breakout and pullout must be multiplied by a factor of 0.75.

Concrete Inserts

WOOD-KNOCKER®II+/PAN-KNOCKER[™]I

TECHNICAL GUIDE - MECHANICAL ANCHORS © 2022 DEWALT - REV. J

Tension and Shear Design Strengths for Wood-Knocker II+ and Pan-Knocker II+ Multi Thread Inserts Installed in Form Poured Concrete and Roof Members - Uncracked Concrete^{1,2,3,4,5,6,7}

			r.	Ainimum Concrete C	ompressive Strengt	th	
Nominal Anchor Diameter	Embed. Depth	f'c = 3,	000 psi	f'c = 4,000 psi		f'c = 6,000 psi	
(in.)	hef (in.)	∲Nn Tension (lbs.)	∲Vn Shear (lbs.)	ϕ Nn Tension (lbs.)	∲Vn Shear (lbs.)	ϕ Nn Tension (lbs.)	∲Vn Shear (lbs.)
1/4" (1/4 - 3/8" Multi LP)	1-1/4	1,605	590	1,855	590	2,275	590
3/8" (1/4 - 3/8" Multi LP)	1-1/4	1,605	1,235	1,855	1,425	2,275	1,700
1/4" (1/4 - 3/8" Multi)	1-3/4	2,005	545	2,005	545	2,005	545
3/8" (1/4 - 3/8" Multi)	1-3/4	2,665	2,420	3,075	2,530	3,765	2,530
1/4" (1/4 - 3/8 - 1/2" Multi)	1-3/4	2,305	1,065	2,305	1,065	2,305	1,065
3/8" (1/4 - 3/8 - 1/2" Multi)	1-3/4	2,665	2,420	3,075	2,530	3,765	2,530
1/2" (1/4 - 3/8 - 1/2" Multi)	1-3/4	2,665	2,420	3,075	2,795	3,765	3,425
3/8" (3/8 - 1/2" Multi)	1-3/4	2,665	2,085	3,075	2,085	3,765	2,085
1/2" (3/8 - 1/2" Multi)	1-3/4	2,665	2,420	3,075	2,795	3,765	3,425
3/8" (3/8 - 1/2 - 5/8" Multi)	2-1/4	3,880	2,230	4,485	2,230	5,490	2,230
1/2" (3/8 - 1/2 - 5/8" Multi)	2-1/4	3,880	3,880	4,485	4,485	5,490	5,490
5/8" (3/8 - 1/2 - 5/8" Multi)	2-1/4	3,880	3,880	4,485	4,485	5,490	5,490
5/8" (5/8 - 3/4" Multi)	2-1/4	3,880	3,880	4,485	4,485	5,490	5,490
3/4" (5/8 - 3/4" Multi)	2-1/4	3,880	3,880	4,485	4,485	5,490	5,490

Tension and Shear Design Strengths for Wood-Knocker II+ and Pan-Knocker II+ Multi Thread Inserts Installed in Form Poured Concrete and Roof Members - Cracked Concrete^{1,2,3,4,5,6,7,8}

		Minimum Concrete Compressive Strength						
Nominal Anchor Diameter	Embed. Depth	f'c = 3,000 psi		f'c = 4,000 psi		f'c = 6,000 psi		
(in.)	h _{ef} (in.)	ϕ Nn Tension (lbs.)	∲Vn Shear (lbs.)	ϕ Nn Tension (lbs.)	∲Vn Shear (lbs.)	ϕ Nn Tension (lbs.)	∲Vn Shear (lbs.)	
1/4" (1/4 - 3/8" Multi LP)	1-1/4	1,285	590	1,485	590	1,820	590	
3/8" (1/4 - 3/8" Multi LP)	1-1/4	1,285	885	1,485	1,020	1,820	1,250	
1/4" (1/4 - 3/8" Multi)	1-3/4	2,005	545	2,005	545	2,005	545	
3/8" (1/4 - 3/8" Multi)	1-3/4	2,130	1,730	2,460	2,000	3,015	2,445	
1/4" (1/4 - 3/8 - 1/2" Multi)	1-3/4	2,130	1,065	2,305	1,065	2,305	1,065	
3/8" (1/4 - 3/8 - 1/2" Multi)	1-3/4	2,130	1,730	2,460	2,000	3,015	2,445	
1/2" (1/4 - 3/8 - 1/2" Multi)	1-3/4	2,130	1,730	2,460	2,000	3,015	2,445	
3/8" (3/8 - 1/2" Multi)	1-3/4	2,130	1,730	2,460	2,000	3,015	2,085	
1/2" (3/8 - 1/2" Multi)	1-3/4	2,130	1,730	2,460	2,000	3,015	2,445	
3/8" (3/8 - 1/2 - 5/8" Multi)	2-1/4	3,105	2,230	3,585	2,230	4,390	2,230	
1/2" (3/8 - 1/2 - 5/8" Multi)	2-1/4	3,105	2,895	3,585	3,340	4,390	4,090	
5/8" (3/8 - 1/2 - 5/8" Multi)	2-1/4	3,105	2,895	3,585	3,340	4,390	4,090	
5/8" (5/8 - 3/4" Multi)	2-1/4	3,105	2,895	3,585	3,340	4,390	4,090	
3/4" (5/8 - 3/4" Multi)	2-1/4	3,105	2,895	3,585	3,340	4,390	4,090	
- Anchor Pullout/Pryout Strength Con	trols 🔲 - Concrete I	Breakout Strength Cont	rols 🔲 - Steel Strengtl	n Controls				

Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, h_a = h_{min}, and with the following conditions:
 No edge distance influence (c_{a1} ≥ 1.5h_e) and no side-face blowout in tension.
 No edge distance (c_{a1} ≥ 3h_e) or corner distance influence (c_{a2} ≥ 1.5c_{a1}) in shear.

2- Calculations were performed following methodology in ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D. The load level corresponding to the failure mode listed [steel strength of insert (Nainsert, Valmeert), concrete breakout strength, or pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod type, (Nainot, Valmeert), and evel controls.

3- Strength reduction factors shall be taken from ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3 for cast-in headed anchors. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318 (-19 and -14) Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the insert are taken as 0.65 for tension and 0.60 for shear; values correspond to brittle steel elements.

4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.

5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D.

6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D and information contained in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D.

7- For lightweight concrete, where concrete breakout or anchor pullout/pryout strength controls, the tabulated values must be multiplied by 0.85 for sand-lightweight and 0.75 for all-lightweight, as applicable.

8- For seismic design in accordance with ACI 318, the tabulated tension design strengths for concrete breakout and pullout must be multiplied by a factor of 0.75.

Tension and Shear Design Strengths for Wood-Knocker II+ and Pan-Knocker II+ Push-In Thread Inserts Installed in Form Poured Concrete and Roof Members - Uncracked Concrete^{1,2,3,4,5,6,7}

		Minimum Concrete Compressive Strength						
Nominal Anchor	Embed. Depth	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	
Diameter (in.)	h _{ef} (in.)	ØNn Tension (lbs.)	∲Vn Shear (lbs.)	ØNn Tension (lbs.)	∲Vn Shear (lbs.)	ØNn Tension (Ibs.)	∲Vn Shear (lbs.)	
3/8" Push-In	1.70	2,550	2,175	2,945	2,175	3,605	2,175	
1/2" Push-In	2.00	3,255	3,255	3,755	3,575	4,600	3,575	
- Anchor Pullout/Prv	- Anchor Pullout/Provut Strength Controls - Concrete Breakout Strength Controls - Steel Strength Controls							

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tension and Shear Design Strengths for Wood-Knocker II+ and Pan-Knocker II+ Push-In Thread Inserts Installed in Form Poured Concrete and Roof Members - Cracked Concrete^{1,2,3,4,5,6,7,8}

		Minimum Concrete Compressive Strength							
Nominal Anchor	Embed. Depth	f'c = 3,000 psi		f'c = 4,	000 psi	f'c = 6,	000 psi		
Diameter (in.)	h _{ef} (in.)	ϕ Nn Tension (Ibs.)	∲Vn Shear (lbs.)	ϕ Nn Tension (Ibs.)	∲Vn Shear (lbs.)	ϕ Nn Tension (Ibs.)	ØVn Shear (Ibs.)		
3/8" Push-In	1.70	2,040	2,040	2,355	2,175	2,885	2,175		
1/2" Push-In	2.00	2,605	2,605	3,005	3,005	3,680	3,575		
Anshar Dullaut/Day	Analysis Della Alberta Densative Controls - Constraints Densative Controls - Controls - Controls								

🗖 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight concrete with minimum slab thickness, ha = hmin, and with the following conditions:
 No edge distance influence (ca1 ≥ 1.5he) and no side-face blowout in tension.
 No edge distance (ca1 ≥ 3he) or corner distance influence (ca2 ≥ 1.5ca1) in shear.

2- Calculations were performed following methodology in ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D. The load level corresponding to the failure mode listed [steel strength of insert (Naiment, Vsaiment), concrete breakout strength, or pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod type, (Nsaiment, Vsaiment), concrete breakout strength, or pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod type, (Nsaiment, Vsaiment), concrete breakout strength, or pryout strength] must be checked against the tabulated steel strength of the corresponding threaded rod type, (Nsaiment, Vsaiment), concrete breakout strength, or pryout strength]

3- Strength reduction factors shall be taken from ACI 318-19 17.5.3, ACI 318-14 17.3.3 or ACI 318-11 D.4.3 for cast-in headed anchors. Condition B is assumed. Strength reduction factors for load combinations in accordance with ACI 318 (-19 and -14) Section 5.3 or ACI 318-11 Section 9.2 governed by steel strength of the insert are taken as 0.65 for tension and 0.60 for shear; values correspond to brittle steel elements.

4- Tabular values are permitted for short-term static loads only, seismic loading is not considered with these tables.

5- For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D.

6- Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D and information contained in this product supplement. For other design conditions including seismic considerations please see ACI 318 (-19 and -14) Chapter 17 or ACI 318-11 Appendix D.

7- For lightweight concrete, where concrete breakout or anchor pullout/pryout strength controls, the tabulated values must be multiplied by 0.85 for sand-lightweight and 0.75 for all-lightweight, as applicable.

8- For seismic design in accordance with ACI 318, the tabulated tension design strengths for concrete breakout and pullout must be multiplied by a factor of 0.75.

Tension and Shear Design Strength of Steel Elements (Steel Strength)^{1,2,3,4}

	Steel Elements - Threaded Rod							
Nominal Rod Diameter	ASTN	/I A36	ASTM A193	Grade B7				
(in.)	ØNsa.rod Tension (Ibs.)	ØV _{sa,rod} Shear (Ibs.)	φN _{sa,rod} Tension (lbs.)	ØV _{sa.rod} Shear (Ibs.)				
1/4	1,390	720	3,000	1,550				
3/8	3,395	1,750	7,315	3,780				
1/2	6,175	3,210	13,315	6,915				
5/8	9,835	5,115	21,190	11,020				
3/4	14,550	7,565	31,405	16,305				

1. Steel tensile design strength according to ACI 318 Appendix D and ACI 318 Chapter 17, $\phi_{N_{sa}} = \phi \bullet A_{se,N} \bullet f_{uta}$

2. The tabulated steel design strength in tension for the threaded rod must be checked against the design strength of the steel insert, concrete breakout and pullout design strength to determine the controlling failure mode, the lowest load level controls.

3. Steel shear design strength according to ACI 318 Appendix D and ACI 318 Chapter 17, ϕ Vsa = $\phi \bullet 0.60 \bullet A_{SE,N} \bullet f_{uta}$

4. The tabulated steel design strength in shear for the threaded rod must be checked against the design strength of the steel insert, concrete breakout and pryout design strength to determine the controlling failure mode, the lowest load level controls.

ORDERING INFORMATION

Wood-Knocker®II+ Form Insert (UNC internal thread)

Cat. No.	Description	Color Code	Pack Qty.
PFM2500014	1/4" Wood-Knocker II+ LP (Low Profile)	Brown	100
PFM2500038	3/8" Wood-Knocker II+ LP (Low Profile)	Green	100
PFM2521100	1/4" Wood-Knocker II+	Brown	100
PFM2521150	3/8" Wood-Knocker II+	Green	100
PFM2521200	1/2" Wood-Knocker II+	Yellow	100
PFM2521250	5/8" Wood-Knocker II+	Red	100
PFM2521300	3/4" Wood-Knocker II+	Purple	100
PFM2501438	1/4-3/8" Wood-Knocker II+ Multi LP (Low Profile)	White	100
PFM2521438	1/4-3/8" Wood-Knocker II+ Multi	White	100
PFM2521350	3/8-1/2" Wood-Knocker II+ Multi	Gray	100
PFM253143812	1/4-3/8-1/2" Wood-Knocker II+ Multi	Aqua	100
PFM253381258	3/8-1/2-5/8" Wood-Knocker II+ Multi	Orange	50
PFM2525834	5/8-3/4" Wood-Knocker II+ Multi	Black	50
PFM2610038	3/8" Wood-Knocker II+ Push-In Thread	Green	50
PFM2610012	1/2" Wood-Knocker II+ Push-In Thread	Yellow	50
nserts are color coded to easily	ν identify location, type and sizes of the internal diameters.		

Wood-Knocker II+ Installation Accessories and Tools

Cat. No.	Description	Pack Qty.				
PFM3612000	Wood-Knocker II+ Installation Tool	1				
DWHT51439	16oz Steel Curve Claw Hammer	1				
The Wood-Knocker I	The Wood-Knocker II+ installation tool features a magnetic end to help hold the insert and assist in placement.					

Pan-Knocker II+ Form Insert (UNC internal thread)

Cat. No.	Description	Color Code	Pack Qty.
PFM2501438NN	1/4-3/8" Pan-Knocker II+ Multi LP (Low Profile)	White	100
PFM253143812NN	1/4-3/8-1/2" Pan-Knocker II+ Multi	Aqua	100
PFM253381258NN	3/8-1/2-5/8" Pan-Knocker II+ Multi	Orange	100
PFM2525834NN	M2525834NN 5/8-3/4" Pan-Knocker II+ Multi		100
PFM2610038NN	PFM2610038NN 3/8" Pan-Knocker II+ Push-In Thread		50
PFM2610012NN 1/2" Pan-Knocker II+ Push-In Thread		Yellow	50
Pan-Knocker II+ form inserts m	ust be mounted (e.g. screwed, pinned) to the form work. Fastene	rs are not included.	

Pan-Knocker II+ Cordless Concrete Nailer Installation Tool and Pins

Cat. #	Description				Pack Qty.	Carton Qty.	
DCN891P2	20V Max* Cordless Concrete Nailer Kit				1	-	
Cat. #	Shank Dia. in.	Step Dia. in.	Length in.	Knurl (K)	Finish	Pack Qty.	Carton Qty.
DCN8907804	0.102"	0.088"	0.780"	Yes	Zinc	1000	6000
Fasteners have a head diameter of .250" and are zinc plated in accordance with ASTM B695, Class 5.							

Pan-Knocker II+ Gas Fastening Nailer Installation Tool and Pins

Cat. #	Description				Pack Qty.	Carton Qty.	
55142-PWR	Trak-It C5 Tool W/Deep Track (1-1/4" Pin)					1	-
Cat. #	Shank Dia. in.	Step Dia. in.	Length in.	Knurl (K)	Finish	Pack Qty.	Carton Qty.
55330-PWR	0.120"	0.102"	0.730"	Yes	Zinc	800	4000
55342-PWR	0.102"	0.088"	0.780"	Yes	Zinc	800	4000
Fasteners have a head diameter of .250" and are zinc plated in accordance with ASTM B695, Class 5.							

Push-In Thread Couplers

Cat. No.	Description	Pack Qty.				
PFM3613038	3/8"-16 Coupler Push-In Thread	20				
PFM3613012	1/2"-13 Coupler Push-In Thread	20				
Push-In couplers have one end that does not require turning threaded rod elements during installation which can be ideal for applications such as mounting prefabricated hardware and hanger assemblies.						

<u>EHHHHHHHHHHHH</u>

2

www.**DeWALT**.com